15 research outputs found

    An improved image steganography scheme based on distinction grade value and secret message encryption

    Get PDF
    Steganography is an emerging and greatly demanding technique for secure information communication over the internet using a secret cover object. It can be used for a wide range of applications such as safe circulation of secret data in intelligence, industry, health care, habitat, online voting, mobile banking and military. Commonly, digital images are used as covers for the steganography owing to their redundancy in the representation, making them hidden to the intruders, hackers, adversaries, unauthorized users. Still, any steganography system launched over the Internet can be cracked upon recognizing the stego cover. Thus, the undetectability that involves data imperceptibility or concealment and security is the significant trait of any steganography system. Presently, the design and development of an effective image steganography system are facing several challenges including low capacity, poor robustness and imperceptibility. To surmount such limitations, it is important to improve the capacity and security of the steganography system while maintaining a high signal-to-noise ratio (PSNR). Based on these factors, this study is aimed to design and develop a distinction grade value (DGV) method to effectively embed the secret data into a cover image for achieving a robust steganography scheme. The design and implementation of the proposed scheme involved three phases. First, a new encryption method called the shuffle the segments of secret message (SSSM) was incorporated with an enhanced Huffman compression algorithm to improve the text security and payload capacity of the scheme. Second, the Fibonacci-based image transformation decomposition method was used to extend the pixel's bit from 8 to 12 for improving the robustness of the scheme. Third, an improved embedding method was utilized by integrating a random block/pixel selection with the DGV and implicit secret key generation for enhancing the imperceptibility of the scheme. The performance of the proposed scheme was assessed experimentally to determine the imperceptibility, security, robustness and capacity. The standard USC-SIPI images dataset were used as the benchmarking for the performance evaluation and comparison of the proposed scheme with the previous works. The resistance of the proposed scheme was tested against the statistical, X2 , Histogram and non-structural steganalysis detection attacks. The obtained PSNR values revealed the accomplishment of higher imperceptibility and security by the proposed DGV scheme while a higher capacity compared to previous works. In short, the proposed steganography scheme outperformed the commercially available data hiding schemes, thereby resolved the existing issues

    Wireless body area network revisited

    Get PDF
    Rapid growth of wireless body area networks (WBANs) technology allowed the fast and secured acquisition as well as exchange of vast amount of data information in diversified fields. WBANs intend to simplify and improve the speed, accuracy, and reliability of communica-tions from sensors (interior motors) placed on and/or close to the human body, reducing the healthcare cost remarkably. However, the secu-rity of sensitive data transfer using WBANs and subsequent protection from adversaries attack is a major issue. Depending on the types of applications, small and high sensitive sensors having several nodes obtained from invasive/non-invasive micro- and nano- technology can be installed on the human body to capture useful information. Lately, the use of micro-electro-mechanical systems (MEMS) and integrated circuits in wireless communications (WCs) became widespread because of their low-power operation, intelligence, accuracy, and miniaturi-zation. IEEE 802.15.6 and 802.15.4j standards have already been set to specifically regulate the medical networks and WBANs. In this view, present communication provides an all-inclusive overview of the past development, recent progress, challenges and future trends of security technology related to WBANs

    Performance evaluation measurement of image steganography techniques with analysis of LSB based on variation image formats

    Get PDF
    Recently, Steganography is an outstanding research area which used for data protection from unauthorized access. Steganography is defined as the art and science of covert information in plain sight in various media sources such as text, images, audio, video, network channel etc. so, as to not stimulate any suspicion; while steganalysis is the science of attacking the steganographic system to reveal the secret message. This research clarifies the diverse showing the evaluation factors based on image steganographic algorithms. The effectiveness of a steganographic is rated to three main parameters, payload capacity, image quality measure and security measure. This study is focused on image steganographic which is most popular in in steganographic branches. Generally, the Least significant bit is major efficient approach utilized to embed the secret message. In addition, this paper has more detail knowledge based on Least significant bit LSB within various Images formats. All metrics are illustrated in this study with arithmetical equations while some important trends are discussed also at the end of the paper

    Implantable slot antenna with substrate integrated waveguide for biomedical applications

    Get PDF
    This work presents a new design of capsule slot antenna with substrate integrated waveguide (SIW) for wireless body area networks (WBANs) operating at the range of (2.5-4 GHz) which is located in the body area networks (BAN) standard in IEEE802.15.6. The proposed antenna was designed for WBANs. The substrate is assumed to be from Rogers 5880 with relative permittivity of 2.2, and thickness of 0.787 mm. The ground and the patch are created from annealed copper while the capsule is assumed to be a plastic material of medical grade polycarbonate. The antenna designed and summited using computer simulation technology (CST) software. A CST voxel model was used to study the performance of SIW capsule antenna and the ability of the band (2.5-4 GHz). Results indicated a wide bandwidth of 1.5 GHz between the range of (2.5-4) GHz at 3.3 GHz as center frequency, with return loss with more than -24.52 dB, a gain of -18.2 dB, voltage standing wave ratio (VSWR) of 1.17, and front-to-back ratio (FBR) of 10.07 dB. Through simulation, all considerable parameters associated with the proposed antenna including return loss, bandwidth, operating frequency, VSWR less than 2, radiation pattern were examined. Regarding size, gain, and frequency band, the proposed antenna is located with the standards of implantable medical devices (IMDs)

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Securing medical data transmission systems based on integrating algorithm of encryption and steganography

    No full text
    The awareness to secure medical data has significantly increased. Steganographic has binged an important topic especially in this area since it has the capability to avoid medical data breach. This paper proposes a new steganography scheme based on Bit Invert System (BIS) using three control random parameters. The random selection process is performed based on Henon Map Function (HMF). In order to increase the security level, affine cipher and Huffman method is used for encryption as well as to minimize the encrypt data prior to the embedding for high payload ability. This integration is effective due to two main reasons: first, checking, and mapping to determine 0- and 1-bits during embedding, and second, segmenting the secret data to track and map every bit in stego image. The results showed that the presented scheme can assure confidentiality and security of the medical data while maintaining the image quality

    Implantable slot antenna with substrate integrated waveguide for biomedical applications

    Get PDF
    This work presents a new design of capsule slot antenna with substrate integrated waveguide (SIW) for wireless body area networks (WBANs) operating at the range of (2.5-4 GHz) which is located in the body area networks (BAN) standard in IEEE802.15.6. The proposed antenna was designed for WBANs. The substrate is assumed to be from Rogers 5880 with relative permittivity of 2.2, and thickness of 0.787 mm. The ground and the patch are created from annealed copper while the capsule is assumed to be a plastic material of medical grade polycarbonate. The antenna designed and summited using computer simulation technology (CST) software. A CST voxel model was used to study the performance of SIW capsule antenna and the ability of the band (2.5-4 GHz). Results indicated a wide bandwidth of 1.5 GHz between the range of (2.5-4) GHz at 3.3 GHz as center frequency, with return loss with more than -24.52 dB, a gain of -18.2 dB, voltage standing wave ratio (VSWR) of 1.17, and front-to-back ratio (FBR) of 10.07 dB. Through simulation, all considerable parameters associated with the proposed antenna including return loss, bandwidth, operating frequency, VSWR less than 2, radiation pattern were examined. Regarding size, gain, and frequency band, the proposed antenna is located with the standards of implantable medical devices (IMDs)
    corecore